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ABSTRACT

A distributed monitoring and diagnosis system has been developed and success-
fully applied to real--time monitoring of interplanetary spacceraft at NASA’s Jet
Propulsion Laboratory. This system uses a combination of conventional proccss-
ing and artificial intelligence. Knowledge-based diagnosis modules are embed-
ded within an automated monitoring system that detects on-board spacecraft
anomalies. The diagnostic modules are specialized to respond to anomaliesin a
single domain of expertise and to cooperate with one another when necessary to
solve complex problems that extend beyond an individual domain. Details of the
distributed architecture, real-time diagnosis, and system pecrformance arc de-
scribed in the paper. A brief summary of lessons learned in transferring research
prototypes into operational environments is also reported.
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INTRODUCTION

A combination of’ practical and innovative computerscicnce has been applied to the MARVEL
system [Schwuttke et a. 1992] for automated monitoring and diagnosis of spacecraft telemetry. This
system has been shown to achieve robust and coherent behavior for complex, real-time diagnostic mod-
ules embedded in a conventional (algorithmic) monitoring system.

The system architecture has been designed to facilitate concurrent and cooperative processing by
multiple diagnostic expert systems in a hierarchical organization. The expert systems adhere to concepts
of data-driven rcasoning, constrained but complete nonoverlapping domains, metaknowledge of global
conscquences of anomalous data, hicrarchical reporting of problems that cxtend beyond a single domain,
and shared responsibility for problems that overlap domains.

These features combine to cnable efficient diagnosis of complex system failures in real-time en-
vironments with high data volumes and moderate failure rates, as indicated by detailed performance
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Iigure 1. The distributed architecture on the left can currently be configured to run on one to four
UNIX workstations, with the most common operational configuration involving two worksta-
tions (for compatibility with analyst responsibilities). The hybrid subsystemn processes on the left
arc composed of conventional and knowledge processes, as shown in the figure on the right.

measurcments from two different apolications of the svstem. Onc of these applications has been in con-
tinuous operational usc since it was first deployed in” 1989 for the Voyager spacecraft encounter with
Neptune. ‘I"his application remained under incremental devclopment for a period of three years subsequent
to the original delivery and has been under routine maintenance since 1991. The current application for
the Galileo mission is a second generation system that has been on-line for only onc year and is still under
act ive development. The second generation system builds on experience gained with this technology to
achicve an order of magnitude increase in performance.

COOPERATING EXPERT SYSTEMS EMBEDDED IN A DISTRIBUTED ARCH ITECTURE

Recently, the need for mechanisms of cooperation that arc sufficiently robust for real-world mon-
itoring applications has become a research driver. Systems such as GRATE* [Jennings and Mamdani,
1992] contribute toward a clearer and more easily implementable interaction of agents during collabora-
tive problem solving. GRATE* addresses a problem domain in which events occur unpredictably and
decisions may be based on incomplete or imprecise data. Toward this end, the notion of joint responsi-
bility is proposed as an altcrnative to the more conventional notion of agents acting in self-interest, The
potential for large communication overhead is a possible disadvantage of the GRATE* system, particu-
larly for applications with time critical analysis.

The protocol and architecture described in this paper builds on the notion of joint responsibility
and uscs modular problem decomposition and data-driven reasoning in order to minimize communication
between agents. The various modules in the distributed architecture of Figure 1 arc allocated among a
configuration of UNIX workstations. Interprocess communication is based on a central message routing
scheme. The data management module receives data from a source (in the case of our current application,
the data is spacecraft telemetry received from JPL’s ground data system) and allocates it to the appropriate
subsystem monitor based on identification of datatype. (Our system is partitioned according to the struc-
turc of the spacecraft, with one subsystem monitor for every spacecraft subsystem. Spacecraft subsystems
include command and data, attitude and articulation control, propulsion, telecommunications, thermal,




and power. A mapping between partitioning in the monitoring system and the natural partitioning of the
system being monitored is desirable for real-time diagnostic architectures. ) Each of the subsystem mon-
itors provides algorithmic functions such as validation of telemetry, detection of anomalies, trend analysis
and automatic reporting. These functions, while not in themselves of interest in Al or computer science
research, arc vital componcnts of a real-world diagnostic system. They arc implemented here in conven-
tional C code for performance reasons. In addition, each subsystem process can provide diagnosis of
failures based on anomalous data and recommendation of corrective actions. Thelatter two functions arc
provided by know]edgc-based modules that are embedded within each of the individual subsystem
monitors. The remaining modules include the graphical user i nterface and display processes for each of
the subsystem monitors, and the systcm-level diagnostic agent for handling failures that manifest them-
sclves across multiple subsystems (and therefore cannot be completely analyzed by any onc subsystem
alone). Detailed reasoning examples from the actual application arc presented elsewhere [Schwuttke and
Quan 1993].

CHARACTERISTICS OF THE EXPERT SYSTEMS

The Expert Systems arc Embedded

Rule-based diagnostic modules are embedded in efficient algorithinic code. The algorithmic code
performs all functions that do not explicitly require reasoning capability, so that the usc of the less effi-
cient rcasoning modulesis limited to those functions for which it is essential.

Diagnosis is Data-driven

Forward-chaining demons are used 10 represent domain knowledge. Reasoning is activated by the
appearance of data that requires diagnosis. Theinitial determination that diagnosis is required is made by
algorithmic monitoring code, which detects potential anomalies algorithmically and passes the anomalous
data to an appropriate diagnostician. in the absence of anomalous data within its domain, a diagnostic
systemisidle.

The Domain of Individual Experts is Constrained

An agent is responsible for asmall, clearly partitionable domain of expertise. Partitioning is gov-
erned by the natural decomposition of the system being diagnosed. ‘I his helps overcome disadvantages
associated with rule-based systems for which, typically, implementation can be intractable, execution is
nondeterministic and relatively slow, and verification can be difficult. Small, modular knowledge-bases
enable developers to handle more easily definable subproblems. Smaller knowledge bases execute more
cfficiently, because less time is spent in search. Finally, smaller knowledge-bases arc easier to verify.

The Domain of the Individual Diagnostic Modules is Nonoverlapping

A particular domain of expertise and the associated ruies for performing diagnosis arc assigned
only to onc diagnostic module in order to avoid redundant reasoning.

Diagnostic modules carry individual responsibility for problems entirely within their domain.

Each diagnostician has sufficient knowledge to be fully accountable for diagnoses within its area and has
no knowledge of other domains. This requires that accountability for locally detectable failures must be
local,

Failure Domains May Not Map Directly to Agenf Domains

Diagnosis requires more than one agent when the symptoms mani fest themselves in more than onc
domain,

Metaknowledge Enables Agents to Instigate Cooperation for Diagnosis Beyond Their Domain
Agents have mctaknowledge to identify symptoms of failures that could possibly extend beyond
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1iigure 2. Performance results for each of the subsystemmodules.

their domain. Mctaknowledgg is contained in a set of rules in each knmvled~c-base, and is associated with
the occurrence of events whose analysis may require the cooperation of other agents.

Agents Report All Problems That Extend Beyond Their Domain

Mectaknowledge enables an agent to determine which symptoms from its domain may portend

problems beyond its domain. The mctaknowledge also includes the specific agent(s) to which the infor-
mat ion should be forwarded.

A Hierarchy of Agents Provides Coordination

An expert forwards al known information pertaining to failures beyond its domain to another
agent at the next higher level in the hierarchy. The underlying approach on forwarded messages is con-
servative; it isup to the agent receiving the information to determine whether a fault requiring a diagnostic
message and an alarm has occurred or whether the anomalous data has sorne other explanation. This agent
may also reccive messages from other lower-level agents. Experts at the. higher lcvel arc implemented
according to the same principles as lower-level experts; thus reasoning at the higher levels of the hierarchy
is also data driven. The agents at the higher level arc activated by message.s from lower-level agents, just
as the lowest level agents were activated by messages of symptoms detected by algorithmic code. Mes-

sages arc dirccted with metaknowledge to the relevant agent(s) in order to complete the final analysis of
the anomal ous data and provide diagnosis of any associated failures.

Agents Share Responsibility for Diagnosis of Problems ‘)’ hat Qverlap Domains

Joint responsibilit y exists in that the lower-level agents arc responsible for reporting appropriate
symptoms upward in the hierarchy and the higher-level agent(s) arc responsible for correctly determining
whether fai)ures have occurred and providing appropriate d i agnosis. ‘I-his differs from the™ self interest




modelof communication [Durfee 1988] and is similar to the joint responsibility model [Jennings and
Mamdani, 1992] in which agents must temper their self-interest with consideration to a group. These
models have paralicls in socia organizations, with the first being more representative of an unstructured
society and the second paralleling the actions of individuals who arc dedicated (perhaps for reasons of
self-interest) to fulfilling a successful role in a structured organization such asa business or a corporation.
in the latter case, independent agents work together with appropriate (and hierarchical) division of re-
sponsibility towards fulfilling a common goal. Real-world applications can be sufficiently complex that
only this second type of organization may enable timely, robust, and coherent behavior.

EXPERIMENTAL RESULTS

The distributed architecture described in this paper has been appl icd to two gencrat ions of real-
time monitoring systems. The Galileo system, currently under development, dots not yet include modules
for diagnosis. The Voyager system, completed in 1991, contains four diagnostic expert systems (devel-
oped using acommercial shell) in atwo-level hierarchy.

Convent ional monitoring modules for four of the spacccraft subsystems were completed: the flight
data subsystem, the computer command subsystem, the attitude and articulation control subsystem, and
the telccom subsystem. Three of our expert systems arc embedded in conventional modules that perform
data access/manipulation and monitoring in addition to providing graphical user interfaces and other sub-
system specific automation. The system-level diagnostician is not embedded within another module. As
arcsult, it cannot casily be compared to the other expert systems in a discussion of real-time performance
and it will not be further discussed here.

The remaining expert systems have the following characteristics. The computer command sub-
system (CCS) expert contains on the order of 150 rules, focuses on a relatively broad domain analysis, and
isi nvoked very frequent 1y (for almost every parameter). The att itude and art iculat ion control subsystem
(AACS) cxpert contains approximately 100 rules, and focuses on a more narrow domain of analysis. It is
invoked infrequently. The telecom expert system contains on the order of t wenty-five rules and is invoked
continuously (for every parameter). The flight data subsystem (FDS) module dots not contain an expert
system.

Experimental evaluation on a network of workstations (Sun Microsystem Spare 1.Xs running So-
laris 2.2) involved a series of tests to determine the maximum number of data parameters that could be
processed per module per second (a subsystem module includes both the conventional and knowledge-
based components as shown in Figure 1). The primary purpose of this evaluation was to learn about the
performance of the expert systems and apply our insights to future expert system implementation on the
Galilco application. This evaluation was not motivated by a need to improve the performance of the
Voyager system, as current data rates arc considerably slower than during the planetary encounters and are
easily handled by the existing software configuration.

The results arc shown in Figure 2. The baseline pei formance was below expectation, with FDS,
CCS, AACS and Telecom processing 26,3,24, and 428 parameters pcr second respectivel y, for atotal of
481 parameters per second processed by the ent ire system. Performance profiling revealed that file 1/0
and the graphical user interfaces (GUIs) were primary performance bot tlenecks.

With regard to these bottlenecks, the four modules can be categorized as follows. FDS and CDS
have modecrately complex GUIs, and perform significant file /0. AACS has the most complex GUI and
performs very little file 1/0, because the input files read by this subsystem arc suffici entB/ small that they
arc read entirely into memory upon system initialization. Telecom has a simple GUI and performs nofile
1/0.

Opt imizing file 1/0 where possible improved performance to 53, 16, 81, and 428 parameters pcr
second. (This is the only improvement discussed in this section that was carried forward to the operational
system.) Simplifying the graphical user interface by eliminating real-time scrolling windows (known to be
computationally inefficient in MOTIF user interfaces; considered desirable by end-users and thus includ-
cd in the DS, CCS, and AACS modules of the operational system) further improved performance to 53,




35, 172, and 428 paramcters persecond.  Eliminating the graphical user interface entirely resulted in
performance increases to 67, 35, 646, and 570 parameters per second. Finally, eliminating the expert
systems yielded performance of 67, 273, 668, and 570 paramcters per second.

These results made it possible to gain a number of new insights with regard to our system. The
biggest surprise was the high performance of the telecom module. The combination of the smail knowl-
edge base and the simple user interface enables processing of 428 parameters per second. Elimination of
both the GUI and the expert system only results in a further performance improvement on the order of 25
percent, indicating that no substantial] penalty is associated with the significant enhancement to function-
ality provided by these two components of the module. The next generation systecm will benefit from this
result, in that frequently performed analysis that requires the usc of an expert system will be implemented
with a number of small, cooperating modules rather than one larger module. Further performance im-
provement could likely be gained with a more efficient expert system shell. This will bc investigated
athough wc do not current] y expect more than a several-folcl improvement.

The AACS expert system islarger by a factor of four, and slower by an order of magnitude. This
can be explainced by both alarger search space and greater dejith in each search. Performance could likely
be improved with a faster reasoning shell and by modularization of the knowledge base. However, the
diagnostic component of this module is invoked sufficiently rarely (Iess than once per hour) that this is not
an important bottlencck as there would be insufficient opportunity to benefit from this improvement. In
the case of this type of module, it would be preferable to simplify the GUI, which continues to impose
considerable resource overhead.

The CCS expert system is large and is invoked regularly as par-t of ongoing trend analysis in that
subsystem module. Elimination of the expert system results in an additional order of magnitude increase
in performance, providing further i ndicat ion that a large knowledge base may be inappropri ate for fre-
guently invoked real-time diagnosis. The CCS knowledge base is characterized by breadth rather than
depth. As aresult, it would both beneficial (and straightforward) to reduce it to three or more component
modules without imposing significant overhead from resulting interprocess communication. (If this were
implemented, the CCS module would still be 1/0 bound, as it reads from a number of very large files.)

Asarcsult of these insights, the Galileo implementation takes a more efficient approach to file 1/0.
It also tends to be more efficient in its graphical user interface, in that it does not include some of the
higher-overhead user interface widgets. Such changes impact functionality, requiring a certain amount of
negotiation with end-users (who arc typicaly willing to compromise in favor of performance). In addition,
the Galileo system makes greater use of the distributed aichitecture with more than one module per
subsystem. With these changes wc arc currently able to process a three-fold increase in telemetry param-
clers in the baseline configuration. In the future, the addition of small, modular expert systems for
diagnosisis planned. These will be implemented to have the minimum impact on performance.

OTHER LLESSONS LEARNED IN THE TRANSITION BETWEEN RESEARCH AND
OPERATIONS

The development of MARVEL has involved a constant balance between user needs, research
goals, and (less conveniently) retrofit to an existing opcr ations system that was never intecnded for
automat ion. Under such circumstances, the temptation to put research goals ahead of al 1 other consider-
ations is common; however, these goals must be balanced against user needs in order to maintain the
customer support that is nccded to assure long-term survival. In many cases, sufficient communication
with customers can actually help focus research on real needs. The following lessons have been valuable
in making a successful transition to operations.

Existing Tools Enhance Development Progress

Reasonably priced commercial tools and public domain tools were used in MARVEL with great suc-
cess, for expert system development and for conventional functions such as graphical user interfaces,
trend plotting, and network communication. This turned out to be an advantage from both the implemen-




tation and maintenance perspectives, allowing cost-effective software development to concentrate on
unique task needs for which there were no tools. Recently, some in-house softwarc has even begun to
cmerge that could be effectively reused for some of these unique needs.

K nowleclge-based M ethods Should BelUsed Sparingly in Real-time Systems

For diagnosis functions expert systems provide better implementational paradigms than more efficient
convent ional approaches. However, expert systems usual 1y cinplo y interpreters to perform in ferencing on
the knowledge base rather than compiling the knowledge base into native code. This tends to compromise
performance and can pose difficultics in applications where the fastest possible response time is a critical
factor in meeting real-time constraints |Bahr and Barachini 1990].

MARVETL. achicves adequate response time by placing as much of the computing burden as possible
into conventional algorithmic functions written in C. For example, C processcs handle the initial tasks of
alocating tclemetry to a monitoring module and detecting anomalies. After preliminary tests are done and
a probability of anomaly occurrence has been established, the subsystem monitor invokes knowledge-
based processing for diagnosis of the anomaly and for recommendation of corrective action. This tech-
nique contributes to an overall response time that is sufficient for real-time monitoring.

There is More Than One Way to Benefit From a Diagnostic System

initial emphasis using MARVEL. for productivity enhancement temporarily curtailed the devel opment
of diagnostic expert systems; it was perceived that diagnostic systems did not improve efficiency of
operat 1ons. This perception stemmed from t wo observations: First, anomal y anal ysis was only required in
the presence of spacecraft anomalies. Second, these did not occur with sufficient frequent y to warrant an
automated approach, particular] y since human confirmat ion of the expert system anal ysis would still be
required.

1lowever, mandated workforce reductions subsequent to the Neptune encounter caused renewed in-
terest in expert systems. Now the goal is no longer workforce reduction, but the preservation of mission
expertise. Many current analysts arc new to the mission and, for the most part, do not have the experience
of the previous staff. The ncw personnel will have fewer opportunities to gain such experience: although
the Voyager interstellar mission is scheduled to continue until approximately 2018, spacecraft activity is
at alow level. As aresult, there arc far fewer opportunities for mission operations personnel to learn about
the spacecraft and its operation (ban during the prime mission. There is concern that analysts with the
cxperience to handle future anomalies will be less readily available, or that they will have retired. As a
result, the expert systems arc being expanded to provide information that is based on the expertise of
former analysts. However, thisis much more difficult than it would have been several years ago, as many
of the experts arc no longer available.

Successful Automation Emphasizes Depth Over Breadth

Emphasis on depth over breadth in automation applies equally to conventional components of a sys-
tcm and to expert systems. Attempt to establish viability by simultaneously demonstrating functionality in
athe many diverse areas relevant to alarge application can result in the inability to achieve focus in most
of these areas. In MARVEL., depth has been more difficult to achicve in the expert systems than in the
conventional components of the system. This has resulted from two factors. The first of these was the
need to strive for a system that would enable workforce reductions. The second reason is that it was more
difficult to elicit user requircments and domain knowledge for expert systems than for conventional func-
tions, perhaps because the analysts were better able to express knowledge and communicate information
regarding more conventional or algorithmically oriented tasks.

CONCLUSIONS

The MARVEL distributed architecture demonstrates the successful implementation of multiple
cooperating agents in a complex rcal-time diagnostic system. Wchave designed an architecture that




facilitates concurrent and cooperative processing by multiple agents in a hierarchical organization. These

agents adhere to thc concepts of dat a-driven embedded diagnosis, constrai ned but complete nonoverlap-

ping domains, mctaknowledge of global consequences of anomalous data, hierarchical reporting of

groblems that extend beyond an agent’s domain, and shared responsibility for problems that overlap
omains.

The MARVEL architecture is ssmple and well suited for real-time tclemetry analysis. Conven-
tional processing is used wherever possible in order to facilitate performance. The knowledge-based
agents arc cmbcddcd within the algorithmic code, and are invoked only when necessary for diagnostic
reasoning. Distribution of telemetry monitoring and diagnostic processes across workstations provides
significant improvement in performance. These qualities allow for efficicnt real-time diagnosis of anom-
a ics occurring in a complex application.

Maximum modularization of frequently invoked reasoning modules will enable significant per-
formance improvements in the next generation system.
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